Sign in

User name:(required)

Password:(required)

Join Us

join us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Your Position: Home - Consumer Electronics - When was LED wall invented?

When was LED wall invented?

Shining a Light on the Evolution of LED Video Walls in Stage ...

Insights - Series Article on LED Displays for Rental & Stage

With competitive price and timely delivery, Sawink sincerely hope to be your supplier and partner.

Directory:

  • Shining a Light on the Evolution of LED Video Walls in Stage Design
  • From Blah to Wow: How LED Displays Can Turn Live Events into Unforgettable Experiences
  • Creative Ways to Use LED Screens in Stage Performances
  • Rental & Stage LED Solution From VisionMax

Over the years, lighting has become an integral part of stage design. With the introduction of LED screens, the world of stage design was revolutionized. LED screens have been used to display dynamic images and animations in performances, making the audience connect better with the performance. But what is the history of LED screens in stage design?

 

Early Beginnings

The first LED screen was invented in 1962 by Nick Holonyak Jr, an American engineer. However, it was only in the 1990s that LED screens started to be used in stage design. The first large-scale LED video wall was used by rock band U2 during their 1997 PopMart tour stage. These screens were relatively low resolution, but they opened up a whole new world of possibilities for stage design.

LED walls on the stage in the early years · U2 1997 Tour


Advancements in the 2000s

In the early 2000s, LED technology began to evolve rapidly, leading to the development of high-resolution LED screens capable of displaying full-color images and videos. These screens were used for everything from concerts and live events to corporate presentations and trade shows.

As technology continued to advance, LED displays have grown even more, providing designers with new and exciting ways to create immersive and engaging performances. LED walls, in particular, became increasingly popular in the mid-2000s, providing a cost-effective alternative to traditional projection screens.

In the early 2010s – Instead of using three individual diodes to make up one pixel, LED technology shifted to surface-mounted diodes (SMDs); this enables lower pixel pitches to become possible. They allowed for a more immersive experience for the audience and gave designers the freedom to create stunning visuals that were not possible before.

LED walls on stage · Showcase from VisionMax


Recent developments

Today, LED screens have become an essential part of stage design and continue to evolve. With advancements such as flexible LED screens and transparent LED screens, the possibilities for stage design are endless. LED screens have made it possible to create stunning visuals that can transport the audience to a different world, making the performance a truly unforgettable experience.

Transparent LED walls for the Winter Olympics · Image from the Internet

In conclusion, the history of LED screens in stage design is relatively short but significant. From low-resolution screens to high-resolution LED video walls, LED screens have revolutionized the world of stage design. As technology continues to evolve, LED screens will undoubtedly continue to play a crucial role in creating immersive and unforgettable performances.


Next post: From Blah to Wow: How LED Displays Can Turn Live Events into Unforgettable Experiences

LED display

Display technology

This article is about light-emitting diode (LED) based displays. For LED-backlit displays, see LED-backlit LCD . For matrixed text displays, see Dot-matrix display

Not to be confused with Vacuum fluorescent display

Detail view of an LED display with a matrix of red, green and blue diodes

A LED display is a flat panel display that uses an array of light-emitting diodes (LEDs) as pixels for a video display. Their brightness allows them to be used outdoors where they are visible in the sun for store signs and billboards. In recent years, they have also become commonly used in destination signs on public transport vehicles, as well as variable-message signs on highways. LED displays are capable of providing general illumination in addition to visual display, as when used for stage lighting or other decorative (as opposed to informational) purposes. LED displays can offer higher contrast ratios than a projector and are thus an alternative to traditional projection screens, and they can be used for large, uninterrupted (without a visible grid arising from the bezels of individual displays) video walls. microLED displays are LED displays with smaller LEDs, which poses significant development challenges.[1]

A LED video cube above the ice rink at Nokia Arena in Tampere, Finland.

History

[

edit

]

Light-emitting diodes (LEDs) came into existence in 1962 and were primarily red in color for the first decade. The first practical LED was invented by Nick Holonyak in 1962 while he was at General Electric.[2]

The first practical LED display was developed at Hewlett-Packard (HP) and introduced in 1968.[3] Its development was led by Howard C. Borden and Gerald P. Pighini at HP Associates and HP Labs, who had engaged in research and development (R&D) on practical LEDs between 1962 and 1968. In February 1969, they introduced the HP Model 5082-7000 Numeric Indicator.[4] It was the first LED device to use integrated circuit (integrated LED circuit) technology,[4] and the first intelligent LED display, making it a revolution in digital display technology, replacing the Nixie tube and becoming the basis for later LED displays.[5]

Early models were monochromatic by design. The efficient Blue LED completing the color triad did not commercially arrive until the late 1980s.[1]

In the late 1980s, Aluminium Indium Gallium Phosphide LEDs arrived. They provided an efficient source of red and amber and were used in information displays. However, it was still impossible to achieve full colour. The available "green" was hardly green at all – mostly yellow, and an early blue had excessively high power consumption. It was only when Shuji Nakamura, then at Nichia Chemical, announced the development of the blue (and later green) LED based on Indium Gallium Nitride, that possibilities opened for big LED video displays.

Related links:
Prepaid Meter Products

If you want to learn more, please visit our website stage led video wall manufacturer.

The entire idea of what could be done with LED was given an early shake up by Mark Fisher's design for U2's PopMart Tour of 1997. He realized that with long viewing distances, wide pixel spacing could be used to achieve very large images, especially if viewed at night. The system had to be suitable for touring so an open mesh arrangement that could be rolled up for transport was used. The whole display was 52m (170ft) wide and 17m (56ft) high. It had a total of 150,000 pixels. The company that supplied the LED pixels and their driving system, SACO Technologies of Montreal, had never engineered a video system before, previously building mimic panels for power station control rooms.

Today, large displays use high-brightness diodes to generate a wide spectrum of colors. It took three decades and organic light-emitting diodes for Sony to introduce an OLED TV, the Sony XEL-1 OLED screen which was marketed in 2009. Later, at CES 2012, Sony presented Crystal LED, a TV with a true LED-display, in which LEDs are used to produce actual images rather than acting as backlighting for other types of display, as in LED-backlit LCDs which are commonly marketed as LED TVs.

Large video-capable screens

[

edit

]

The 2011 UEFA Champions League Final match between Manchester United and Barcelona was broadcast live in 3D format in Gothenburg (Sweden), on an EKTA screen. It had a refresh rate of 100 Hz, a diagonal of 7.11 m (23 ft 3.92 in) and a display area of 6.192×3.483 m, and was listed in the Guinness Book of Records as the largest LED 3D TV.[6][7]

Development

[

edit

]

Early prototypes

[

edit

]

A claim for the 'first all-LED flat panel television screen' is presented in this section. It was possibly developed, demonstrated and documented by James P. Mitchell in 1977. Initial public recognition came from the Westinghouse Educational Foundation Science Talent Search group, a Science Service organization.[8][verification needed] The paper entry was named in the "Honors Group" publicized to universities on January 25, 1978.[9] The paper was subsequently invited and presented at the Iowa Academy of Science at the University of Northern Iowa.[10][11] The operational prototype was displayed at the Eastern Iowa SEF[12] on March 18 and obtained a top "Physical Sciences" award and IEEE recognition. The project was again displayed at the 29th International SEF at Anaheim Ca. Convention Center on May 8–10.[13] The ¼-inch thin miniature flat panel modular prototype, scientific paper, and full screen (tiled LED matrix) schematic with video interface was displayed at this event.[14][15] It received awards by NASA[16] and General Motors Corporation.[17][18][19] This project marked some of the earliest progress towards the replacement of the 70+-year-old high-voltage analog CRT system (cathode-ray tube technology) with a digital x-y scanned LED matrix driven with an NTSC television RF video format. Mitchell's paper and operational prototype projected the future replacement of CRTs and included foreseen applications to battery operated devices due to the advantages of low power consumption. Displacement of the electromagnetic scan systems included the removal of inductive deflection, electron beam and color convergence circuits and has been a significant achievement. The unique properties of the light-emitting diode as an emissive device simplify matrix scanning complexity and have helped the modern television adapt to digital communications and shrink into its current thin form factor.

The 1977 model was monochromatic by design.

Recent developments

[

edit

]

MicroLED displays are currently under development by numerous major corporations such as Sony, Apple, Samsung, and LG.

These displays are easily scalable, and offer a more streamlined production process. However, production costs remains a limiting factor.[20]

The 40m large LED display at the Armin Only event in April 2008 in the Jaarbeurs Utrecht

See also

[

edit

]

References

[

edit

]

  • LED displays at Wikimedia Commons

Want more information on high quality seamless lcd splicing display? Feel free to contact us.

18

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)

0/2000